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SUMMARY 
We have implemented a Lagrange multiplier test specifically for the alternative of a 

nonlinear continuous-time autoregressive model with the instantaneous mean having one 
degree of nonlinearity. The test is then extended to testing for the alternative of general 
nonlinear continuous-time autoregressive models with multiple degrees of nonlinearity. 
The performance of the test in the finite-sample case is compared with several existing 
tests for nonlinearity including Keenan's (1985) test. Petruccelli & Davies' (1986) test and 
Tsay's (1986, 1989) tests. The comparison is based on simulated data from some linear 
autoregressive models, self-exciting threshold autoregressive models, bilinear models and 
the nonlinear continuous-time autoregressive models which the Lagrange multiplier test 
is designed to detect. The Lagrange multiplier test outperforms the other tests in detecting 
the model for which it is designed. Compared with the other tests, the test has excellent 
power in detecting bilinear models, but seems less powerful in detecting self-exciting thresh- 
old autoregressive nonlinearity. The test is further illustrated with the Hong Kong beach 
water quality data. 

Some key words: Euler scheme; Irregularity sample data; Kalman filter; Lagrange multiplier test; Stochastic 
differential equation. 

Let {xL)i=,,,.,,,vbe a time series sampled with possibly unequal time intervals. We are 
interested in testing the data for nonlinearity. For irregularly sampled data, several tests 
for nonlinearity are available; see Petruccelli & Davies (1986), Tsay (1989) and Tong & 
Yeung (1991). These tests are, however, implicitly targeted at the alternative of threshold 
models and none of these tests is likelihood based. Here, we develop Lagrange multiplier 
score tests for the alternative of nonlinear continuous-time autoregressive models with 
general nonlinearity in the instantaneous mean function. 

Continuous-time processes are often modelled by stochastic differential equations. For 
rigorous accounts of stochastic differential equations, see Kunita (1990), Lipster & 
Shiryayev (1977), R(ksendal(1995) and Wong & Hajek (1985). The loglikelihood function 
of discrete-time data sampled from a nonlinear continuous-time process is generally 



intractable. However, for sufficiently small sampling intervals, a stochastic differential 
equation may be adequately approximated by a nonlinear difference equation which yields 
a tractable but approximate likelihood function. In practice, the sampling interval of the 
observed data may not be small enough to justify the preceding approximation. Our basic 
idea is to embed the observed data in a sequence of time series with a sufficiently small 
sampling interval. In the terminology of the incomplete-data literature, the observed data 
are called the incomplete data whereas the finely sampled ambient series is called the 
complete data; see Dempster, Laird & Rubin (1977) and Little & Rubin (1987). The latter 
will generally contain extensive missing data, the number of which depends on the specified 
sampling interval. Using this incomplete data framework, we develop formulae for 
approximating the Lagrange multiplier test statistics. The score is computed by Kalman 
filtering whereas the information matrix is computed by Kalman filtering and Monte 
Carlo. 

In this paper, we implement the Lagrange multiplier test for a specific class of nonlinear 
continuous-time autoregressive models. In $2,  we briefly review nonlinear continuous- 
time autoregressive modelling, and in $ 3  we develop the Lagrange multiplier test statistic 
for nonlinearity. In $4, properties of the test are discussed, and empirical sizes of the test 
in the finite-sample case are reported in 8 5. In 8 6 the power of the test is studied via 
simulation, and in $ 7  the test is illustrated with the Hong Kong beach water quality data. 
Some extensions are given in 8 8. 

2. NONLINEARCONTINUOUS-TIME MODELLINGAUTOREGRESSIVE 

Many time series data, {xL)i=,,,,,,,, say, are sampled with unequal time intervals, often 
coming from irregularly sampling an underlying continuous-time process. That is, there 
exists a continuous-time process (X,, t E %) such that F, =XtL. More generally, Y,t can be 
some functional of the underlying continuous-time process, measured perhaps with obser- 
vation error. The underlying continuous-time process is often modelled by linear stochastic 
differential equations, namely a continuous-time autoregressive moving average model. 
This linear specification results in a tractable likelihood for the observed discrete-time 
data, and hence this method has been routinely used in analysing discrete-time sampled 
time series; see Harvey (1989), Bergstrom (1990), Tong (1990) and Jones (1993). In some 
cases, the underlying continuous-time process is not real, but is merely a device for provid- 
ing a convenient analysis. In other cases, the continuous-time process may be the object 
of the study (Bergstrom, 1990). For continuous time series modelling in economics, many 
interesting dynamical processes are nonlinear. There is much literature on regularly 
sampled nonlinear time series; see Tong (1990, 1995), Granger & Terasvirta (1993) and 
Cox (1997). 

In order to analyse irregularly sampled nonlinear time series data, it is natural to 
consider nonlinear continuous-time modelling. Here, we shall mainly consider continuous- 
time nonlinear autoregressive models with additive noise of constant instantaneous 
variance, defined below. This flexible class of models will be called the N L C A R ( ~ )models. 
A N L C A R ( ~ )process is defined to be a solution of the pth-order differential equation 

where g is a measurable function, the superscript ( j )  denotes j-fold differentiation with 
respect to t, { w ,  t 3 0) is standard Brownian motion, and 0 and o are parameters. 
We assume that o >0. Brownian motion is nowhere differentiable, so the solution of 
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equation (1) is interpreted as satisfying the integral equation 

The term g(I.;, x('),. . . , I.;(,-'); 19) is referred to as the instantaneous mean of the process, 
and o as the instantaneous standard deviation. For a Lipschitz continuous function g, the 
solution of equation (1) exists and is unique; see Theorem 5.2.9 of Karatzas & Shreve 
(1991). More generally, o can be state dependent, but this generalisation will not be 
pursued here. 

A NLCAR(P) model becomes a continuous-time autoregressive CAR(P)  model when the 
instantaneous mean is linear. Linearity can be checked by enlarging the CAR(P)  model to 
a larger model in some directions of departure from the linear mean, followed by testing 
for the need for the enlargement. For example, we add an exponential term to the linear 
instantaneous mean to enlarge a CAR(P) model to a NLCAR(P) model. Specifically, 
let h(X,;8), also simply written as h(X,), be a nonlinear function, where 
X, = [X,(O1,. . . ,X,(p-')]', the prime ' denotes the transpose of a vector and XjO) = I.;. Let 
0 = (2, a,, . . . ,a,). Consider the model 

~x,(P-= (a, + a'X, + e'.h(xt) 1) dt + o d w ,  (2)1) -

where x = (a,, . . . ,a,)' and dX,(jP') =x?)dt ( j= 1, . . . ,p - 1). 
The linear CAR(P)  model is obtained by setting A =  0 in equation (2). Equation (2) can 

be equivalently cast in terms of the following observation and state equations (Brockwell, 
1993): 

I.; =H'X, ( t  3 O), 

dX, = {AX,+ (a, + eAh(xt)- 1)6,) dt + 06, d w ,  

Equation (3) is an It6 differential equation for the state vector X,. We assume that X, is 
independent of {w ,  t 2 00) and X, is determined by initial conditions that could be random 
or deterministic. We also assume that a, + 0, so that the inverse of A exists. 

The problem of testing for nonlinearity in the instantaneous mean function becomes 
that of testing H,: A =0 against HI :i+ 0. Note that eah(.) - 1 =Ah(.)+ o(i). For small A, 
therefore, the alternatives are in the form of curvature as specified by h in the instantaneous 
mean function. This corresponds to the test of Keenan (1985) in the case of regular 
sampling if we set h(X,) = (a, + x'X,)~. Moreover, the framework can be extended to the 
general case of several directions of departure from linearity, in which case 

where the hi's are suitable functions of the state variables. Setting the hi's to be interaction 
terms such as x,(j)xjk) yields an analogue to the test of Tsay (1986). 



3. THE TEST STATISTIC 

3.1. Definition of the test statistic 
Let the parameter space be denoted by Q and an arbitrary element of R be denoted by 

6 = (I., v), where ;1 is the parameter of interest and v = (a,, . . . , a,) are nuisance parameters. 
Under the null hypothesis H,: i= 0, let the constrained maximum likelihood estimate of 
v be denoted by 9,, and let the vector of score statistics for ;1 evaluated at i= 0 be denoted 
by S(0, 9,). The information matrix I(1, v) may be partitioned according to the partition 
of the vector (I., v): 

The Lagrange multiplier statistic for H, is given by 

where I,,., = I,, - I ~ I ; , ,  and 1, is the loglikelihood function of the observed data; see 
Cox & Hinkley (1974, p. 324) for further discussion. Alternatively, I(0, Go) may be replaced 
by its expected value. In practice, 02is a nuisance parameter which is needed in computing 
(4), and is replaced by the constrained maximum likelihood estimate of 02under H,. 

Under H,, the NLCAR(P) model (2) is a linear CAR(P)  model, and the likelihood function 
of a CAR(P)  model can be computed via Kalman filters. The constrained maximum likeli- 
hood estimate 9, is then obtained by means of a nonlinear optimisation algorithm; see 
5 3.2. The score vector is also computed via Kalman filters, whereas the observed and the 
expected Fisher information are computed by a Monte Carlo method; see $5 3.3-3.5. 

3.2. Constrained maximum likelihood estimation 

When 1= 0 in equation (2), the model becomes the linear CAR(P)  model 


and equation (3) becomes 

dXt = (AX, + a,6,) dt + 06, d w .  

The solution of (5) can be writen as 

where eAt = I + C,"=, and I is the identity matrix. {(~t)"(n!)-I) ,  

Let the mean vector of {X,) be denoted by p,, which satisfies the equation 


The covariance kernel of {X,), denoted by "J,,, equals 



Nonlinearity for partially observed time series 

where t A s = min(s, t) and 

It follows from the above equations for pt and that the states and the observations, 
Xti and x i ,  at the sampling times to, t,, . . . , satisfy the discrete-time state and observation 
equations 

where Zti is independent of Xti, and {Zti, i = 0,1 , .  . . )  is an independent sequence of 
Gaussian random vectors with zero mean and covariance matrices 

These equations are needed for applications of the Kalman recursions; see for example 
Brockwell & Davis (1991, Ch. 12). Let capital letters be used for random vectors and 
corresponding lower case letters for observed vectors. Let Y = and define {E;i)i=O,,,,,,v 
gtIsas the conditional expectation of X, based on the observations up to time s and Ptls 
the corresponding covariance matrix; that is 

Then we can compute recursively Jti = 2j,7\i-,, the predictive residuals, and p$f13i) yti- l ,  
the (1, 1) element of Ptilti-,( i >  I) ,  which are required for computing minus twice the 
loglikelihood function: 

We start with a diffuse initial condition as we do not assume stationarity; that is we let 
A 

Xt-l l t - l= [ j ,  0, . . . , 0 I t  and Pt-llt-l= 6s:1, where t- ,  < to is some arbitrarily chosen time 
point, 6 is some positive number, and j and s; are the sample mean and sample variance 
of y, respectively. A reasonable choice for 6 is 5. 

A nonlinear optimisation algorithm can then be used in conjunction with the expression 
for -21,(8, 02)to find the maximum likelihood estimate of (8, c2). The calculation of eAt 
is most readily performed by first block-diagonalising A and then applying a Pade approxi- 
mation to each block (Ward, 1977). For computing of X i ,  see Shoji & Ozaki (1998) and 
Tsai & Chan (2000), or an unpublished University of Iowa technical report by H. Tsai 
and K. S. Chan, that uses an EM approach to obtain an approximate but more efficient 
constrained maximum likelihood estimator. 

3.3. The score vector 
Let Y =y be the observed incomplete data, and X = {X,,, X ,,,, . . . ,XkNIm)be the unob- 

served complete data of which Y is a measurable function, where Y = {Y;J), , , , , , ,  and m is 
chosen to be some moderately large integer such that, for each 0 <j <N, tj = kj/m for 



some integer k j .  Henceforth in this section, we write Xk for Xki,, Xjfor X j  and q for k,. 
Also, E,(. 1 y), var,(. 1 y) and cov,(. ly) denote the conditional expectation, variance and 
covariance of the enclosed expression given by Y = y, respectively, where 6 is the true 
parameter. To simplify notation, the parameter 6 is omitted if no confusion would occur. 

Since the likelihood function for nonlinear continuous-time models is intractable, the 
stochastic differential equation 

using Euler's method (Milstein, 1995, p. 18) is approximated by the difference equation 

where = t +~t -x,cp-l), AW; = W;+At -W;and At =X('-l) llm. 
Conditional on X,, equation (8) can be used to get lX(6, 02), the loglikelihood function 

of X: 

where C = -(q/2) log(2nlm) - (q/2) log 02.Let D be the differential operator with respect 
to 6. Louis (1982) has shown that 

In 5 3.4, equation (10) is used to estimate the score vector via Kalman filters, and equation 
(11) is used to estimate the observed Fisher information via Kalman filters and the Monte 
Carlo method. 

Under the null hypothesis, the conditional distribution of X given Y = y is Gaussian. 
For 0 < k <q, the conditional mean and conditional variance of Xk given Y =y can be 
computed by a forward Kalman filtering sequence, followed by backward iteration 
(Anderson & Moore, 1979, p. 189). 

We now outline the Kalman computation. For 0 < k <q, gkl,, &+,,,, Pklkand Pk+ 

can be computed via a forward Kalman filter as follows. First, let g-,I-,= [j,0, . . . ,01' 
and P- -,=6s; I, as in 5 3.2. Then, for 0 < k <q, compute PkIk-, and Pk1 ,  recursively as 
follows: 

where pfii)-lis the (i, j) element of Pklk- , ,  Z = V- and V is the solution of the eAim~eA'im 
matrix equation AV+ VA1= -o2dP6j,. The preceding result about C is well known for the 
stationary case but it also holds for the nonstationary case; see Tsai & Chan (2000) for 
a proof. 

For o < k <q, compute 2, -,and 2k recursively through 
* Aim * 

X k ~ k - l  = P +  ( x k - l l k - l  -P), (I4) 
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where ,u = -a,H/al. Next, using the backwards Kalman filter, we can compute the con- 
ditional means and the variances of the Xk's given all observed data: 

for k = -

For 0 < k < q, the conditional covariance of Xk and Xk- , given Y = y will also be needed, 
and is stated in the following theorem from the University of Iowa technical report by 

where Bk = P,~~~* ' I"P , - ,~ ,  q 1, . . . , 0. 

H. Tsai and K. S. Chan. 

1. (a) Given THEOREM = y, (1  < k) and Xk + ,= xk+ ,, 

where B, = P ~ ~ ~for o~ < k~< q -' I. ~ ~ P ~ ~ ~ ~ ~ , 
(b) For 1 < j <  q- 1, 

To obtain the expressions for the score and the observed and expected information we 
need to specify the form of the function h(Xt). Here, we follow Keenan's (1985) approach 
by taking h(Xt) = (a, + alXt)'. Note that, under H,: i= 0, 

where we have used the fact that cov(Xj, Xj-,/y) = PjlqBj-l, which follows from equa- 
tion (18). 

Note that applying Euler's method in approximating the likelihood function of the 
observations is equivalent to using step functions to approximate the integrals involved 
in the score vector. For a representation of the integral form of the score and further 
discussion, see the technical report by Tsai and Chan. 

3.4. The observed information matrix 
The partial derivatives, up to order 2, of the loglikelihood function of X evaluated under 

H, are given as follows: 



*I --
1 f S X ~ ~ X ~ S ~(1 <r,  s a p ) ,  

das axt ,=, = mo2j=l  

where, for r = 1, . . . ,p, 6, = [6j,r], ,,is a p x 1 vector with S,,, = 1, if j = r, and a,,, =0 if 
j + r, and gj = 6b(Xj-Xj,l) - (x,, + alXj_,)/un. 

Using the above equations and equations (10) and ( l l ) ,  we can obtain a closed-form 
expression for the observed information, but this is very complicated and here we prefer 
to use Monte Carlo methods to compute the observed information. 

We need to simulate Xo, . . . ,Xq given Y = y under the null hypothesis. Let [W 1 z] denote 
the conditional density of W given Z =z. Then 

where the second equality follows from the Markov property. As a result of Gaussianity, 
gqlqand Pqlqallow us to simulate Xq given Y =y. For 0 k q - 1, Xk given Xkt ,and 
y,  (1  k) is a Normal random vector with its first two moments given in Theorem l(a). 

Given y,  (1 a q), Xq -~ ( g ~ ~ ~ ,Pqlq) ,and Theorem l(a) shows that the other Xk's satisfy 
the backward equation 

where F, -N(0, p,), pk = PkIk-BkPkt ,IkB;, for 0 < k <q - 1. Equation (20) enables us to 
simulate the Xj's given Y = y. Apply forward Kalman filtering to obtain g k l k ,  g k t l I k ,  B, 
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and p,, for k = 0, . . . , q - 1, simulate Xq from ~ ( g ~ ~ , ,  and then use (20) to get the PqIq),  
Xj's in a backwards manner. 

3.5. The expected information matrix 

An alternative to the observed Fisher information is the expected information 


-E0,u2( ~ ~ l y ( 8 ,  =02)) Ee,,2 (Dly(8,02)D11y(8, 0')). 

Note that, under H, : 1. = 0, D1,(8, 02)is a ( p  + 2) x 1 vector with elements given by (19) 
along with 

1 4A 

q o2q - o q - mo - m" j = lq1AXj-lIq1 , 

Equations (19), (21) and (22) can be used to compute DlY(8, 02), and I(8,02) can be 
estimated by Monte Carlo as follows. First, do (i) to (iii) L times recursively, where L is 
a prescribed positive integer: 

(i) generate random variables {x$)j=,,l,,,,,, from the stationary CAR(P) model with 
parameter (8, 02), by the discrete-time state and observation equations (6)  and (7); 

(ii) compute D1,*(8,02) by equations (19), (21) and (22); 
(iii) compute DlY*(8, o2)~ ' lY*(8 ,  02). 

Then the average of the L matrices computed from (iii) is an estimate of I(8, 02). 

4. PROPERTIESOF THE MULTIPLIERLAGRANGE TEST 


THEOREM
2 (Asymptotic null distribution of the Lagrange multiplier statistic). Under the 
null hypothesis, the statistic defined by equation (4) asymptotically has a X2 distribution with 
one degree of freedom, if OIN, where 0 is the observed information matrix, converges to a 
positive dejinite matrix under the null hypothesis. 

The proof of Theorem 2 follows from Theorems 1 and 2 and Corollary 1 of Sweeting 
(1980). Next, we show that the test statistic is invariant with respect to linear transform- 
ations. Consequently, the choice of m in the computation of the Lagrange multiplier test 
statistic is independent of the scale of the series. 

THEOREM3. Consider model (2) with h(Xt) = (a, + U'X,)~: 

~ X ; P-1)= (a, + alXt+ eA@0+ - 1) dt + o d w  .a'xt)2 

Let {Yt,jj=, ,...., and {ytT)j =,,,,,,, be two series of discrete-time data, where XI* = a x j  + b, 



for all j, and a + 0. Let LM be the Lagrange multiplier statistic of {xj}j=,,,,,,,dejined by 
equation (4), that is 

where 8, = (0,8,, . . . ,8,) and Bf, are the restricted maximum likelihood estimators of 8 = 
(;I,a,, . . . ,up) and c2based on {Tj} under H, :?.=0. Here, I,,., is computed based on the 
expected information. Similarly, let LM* denote the Lagrange multiplier statistic of {x:} 
dejined in equation (23) with {Y,,} replaced by {TI*}and (a,, 6;) replaced by (a:, 6c2), the 
restricted maximum likelihood estimators of the linear CAR(^) model based on {TI*}. Then 
LM* = LM. 

In this section we use Monte Carlo to study the empirical size of the Lagrange multiplier 
test with nominal significance level equal to 0.10, 0.05 and 0.01. Regularly spaced time 
series data, xi=X,!') (i=0, 1, 2, . . . ,N)  are simulated from two stationary continuous- 
time autoregressive processes: 

Model 1, dXj0) = -0.25X,'01 dt + dl/t;, 

Model 2, dX,") =(- 0.3~,(')-0.2X,")) dt + dl/t;. 

The empirical rejection frequencies of the Lagrange multiplier statistic based on the 
observed information and based on 1000 replications are given in Table 1. In Table 1, 
m - 1 is the number of imputations between every two adjacent observations, and L is 
the number of replicates used in the Monte Carlo simulation for computing the observed 
and the expected information matrices. 

Table 1. The empirical frequencies of rejecting a 
linear model based on 1000 replications generated 

from Models 1 and 2 

Nominal levels 
N m L 0.100 0.050 0.010 

Observed information 
Model 1 	 100 20 100 0.241 0.209 0.180 

100 20 2000 0.230 0.211 0.179 
100 100 100 0.221 0.192 0.159 
200 20 100 0.201 0.162 0,125 
400 20 100 0.154 0.112 0,063 

1000 20 	 100 0.122 0.073 0.037 

Expected information 
Model 1 50 20 100 0.044 0.017 0.004 

50 40 100 0.045 0.019 0,003 
100 20 100 0.070 0.033 0.008 
100 40 100 0.063 0.029 0.008 
200 20 100 0.073 0.036 0.012 
200 40 100 0.078 0.041 0.011 
400 20 100 0.098 0.051 0.018 

Model 2 100 20 100 0.074 0.032 0.007 

http:0.2X,"))
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Table 1 shows that, if the test is based on the observed information matrices, the empiri- 
cal rejection frequencies of the test tend to be much larger than the nominal frequencies, 
especially for sample size not larger than 400. This is because, at the constrained maximum 
likelihood estimator under H,, the observed information need not be positive definite. If 
we use the expected information, the test statistics converge to the X2 distribution much 
faster. The empirical sizes of the test are much closer to the nominal sizes, although they 
seem to be conservative, especially for sample size not larger than 100. Table 1 also shows 
that the empirical frequencies of the test seem robust to the values of m and L whenever 
m 3 20 and L 3 100. 

In this section we use Monte Carlo to compare the Lagrange multiplier test with Keenan's 
(1985) test, Petruccelli & Davies' (1986) test and Tsay's (1986,1989) tests. The computation 
of the Lagrange multiplier test statistic is based on the expected information. In practice, 
the choice of m is important. One way to choose m is to set m initially at 20, say, and 
then to increase m in a systematic way until the test statistics converge. Here, for the 
simulation, we simply choose m to be 20. The values of p and L are chosen to be 1 and 
100, respectively. According to the suggestions of Keenan (1985) and Tsay (1989), we 
choose an autoregressive approximation of order M = 4 to calculate Keenan's test and 
Tsay's (1986) test, and use 

with N the sample size and p the fitted autoregressive order, to compute the Petruccelli 
& Davies test and Tsay's (1989) test. Here rmi, is defined in Petruccelli & Davies (1986). 
The values of p and d in the Petruccelli & Davies test and Tsay's (1989) test are both 
chosen to be 1. 

For simplicity, only regularly spaced time series data are simulated. All of the empirical 
frequencies of rejecting a linear process are based on 1000 realisations with critical value 
equal to 5%, and the sample size is always 101. Three underlying models were studied. 

Norzlinear contirzuous-time autoregressive model. This is the model that the Lagrange 
multiplier test is specifically designed to detect: 

dXt = (a, + alXt + ea("~+"~Xt)21) dt + o d@, (24)-

with (a,, a , )  = (0.0, -0.25) and il varies from -3.0 to + 1.0. The data are simulated 
using the local linearisation scheme of Ozaki (1985); see also Ozaki (1992), Shoji 
(1998) and Shoji & Ozaki (1997, 1998). First, we simulate a discretised process 
(Xti, i = 1, . . . , 12 000) with step size h = 0.0125. The regularly spaced time series data 
(x= X,ooo+,oi,i = 0, 1, . . . , 100) are then used for testing for nonlinearity. The empirical 
frequencies of rejecting a linear process are given in Table 2. It is clear that, not surprisingly, 
the Lagrange multiplier test is generally more powerful than the other tests. Also note 
that, for the linear model, that is il= 0, the Lagrange multiplier test results in relatively 
smaller type I errors than the other tests. For I. = -2, the empirical frequency of the 
Lagrange multiplier test with (m, h) = (40,0.0125) is 0.960, which is 0.014 larger than for 
the test with (m, h) = (20,090125). Note that the N L C A R ( ~ )process defined by equation 
(24) with a, < 0 is asymptotically stationary if il< 0 and is nonstationary if I. > 0. The 
model becomes linear when I.+ -m; hence the decrease in the power of the Lagrange 
multiplier test for il< -2. 



Table 2. The  empirical frequencies of rejecting a linear model based on 1000 replications 
generated from the model in (24). The  nominal size of the test is 5% 

A 

Test -3 -2.5 -2 -1.5 - 1  -0.5 0 0.25 0.5 0.75 1 

L M 0.592 0,810 0.946 0,703 0.209 0.058 0,035 0.042 0.101 0.271 0.591 
Tsay (1989) 0.227 0.153 0.092 0,058 0.045 0.042 0,059 0.087 0.139 0,182 0.290 
PD 0.215 0.232 0,111 0,036 0,035 0.044 0.046 0.059 0.086 0,106 0.111 
Tsay (1986) 0.550 0.613 0.511 0.331 0.161 0,071 0.044 0.050 0.078 0.180 0,272 
Keenan (1985) 0.251 0.266 0.208 0.170 0.139 0.065 0.033 0.036 0.082 0.155 0.189 

LM, Lagrange multiplier; PD, Petruccelli & Davies (1986). 

Self-exciting threshold autoregressive model. We used the model used in the power study 
of Petruccelli & Davies (1986): 

where a, -N(0, 1), 4, = -0.5,0.0,0.5 and 4, = -2.0,O.O. The stationary region of (25) 
was shown to be 4, < 1, 4, < 1 and 4,4, < 1 by Petruccelli & Woolford (1984). Thus 
(4,, 4,) = (-0.5, -2) is outside the stationary region. To mitigate the transient effect, we 
generated 1100 observations from mode1 (25) with Y ,= 0 and discarded the first 1000 
values. With 1000 realisations, the empirical frequencies of rejecting a linear process are 
given in Table 3. The Lagrange multiplier test is less powerful than the other four tests. 
For the linear model (4,, 4,) = (0, O), the Lagrange multiplier test results in smaller 
Type I error. 

Table 3. The empirical frequencies of rejecting a linear model based orz 
1000 replicatiorzs generated from the model in (25). The  nominal size 

of the test is 5% 

$I = -0.5 $1= 0 41 =0.5 
Test 42=-2  42=0 d 2 = - 2  4 2 = 0  $h2=-2 ( j 2 = o  
L M 0.050 0.018 0,757 0.017 0.375 0,054 
Tsay (1989) 0.951 0.195 1.000 0.045 0.997 0.214 
PD 0,933 0,116 0,987 0.043 0,990 0.148 
Tsay (1986) 1.000 0.117 0,974 0.055 1.000 0.124 
Keenan (1985) 0.973 0.139 0.998 0.056 0.410 0,167 

LM, Lagrange multiplier; PD, Petruccelli & Davies (1986). 

One of the reasons for the poor performance of the Lagrange multiplier test with p = 1 
is that the autocorrelations of a CAR(^) model are always positive, since e"lt >0 always. 
However, some of the autocorrelations of model (25) may be negative. This restriction on 
the correlation pattern can be lifted by considering higher-order continuous-time auto- 
regressive models. When we try the Lagrange multiplier test for the higher orders p =2, 
3 and 4, the empirical frequencies become 0.911, 0.881 and 0.402, respectively, in testing the 
case with (4,, 4,) =(- 0.5, -2). For the same case, the empirical frequency of the Lagrange 
multiplier test is 0.064 with ( p ,  m)  = (l ,40),  which is only 0.014 larger than with ( p ,  m) = 

(1,20). The low power of the Lagrange multiplier test may also be caused by the slow 
convergence rate of Euler's method; we shall study the use of other approximation methods 
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in the future. Another way to increase the power of the Lagrange multiplier tests is to 
consider more general alternative hypotheses; see 5 8. 

Bilinear model. We used the bilinear model also considered by Petruccelli & Davies 
(1986): 

where at -N(0, I) ,  ,B = 1.0 and 4 = -0.9, -0.5, 0.5, 0.9. Results from the same simulation 
method as used above are given in Table 4. In general, the Lagrange multiplier test is less 
powerful than Tsay's (1986) test, but is more powerful than the others. 

Table 4. The empirical frequencies of rejecting a 
linear model based orz 1000 replicatiorzs generated 
from the model irz (26). The nomirzal size of the test 

is 5% 

p = 1  8 = 1  8 = 1  p = 1  
Test 4 = - 0 . 9  4= -0 .5  4=0.5 4=0.9 

LM 0.765 0.649 0.809 0.878 
Tsay (1989) 0.853 0.626 0.504 0.714 
PD 0.562 0,498 0,428 0,641 
Tsay (1986) 0.946 0.808 0,810 0,930 
Keenan (1985) 0.701 0.497 0,447 0.540 

LM, Lagrange multiplier; PD, Petruccelli & Davies (1986). 

7. APPLICATION 

Example: Horzg Kong beach water quality data (Tong, 1990). Over the years of 1980-85, 
irregularly sampled water quality data were taken one to three times a month from four 
Hong Kong beaches, namely Butterfly, Anglers, Repulse Bay and Shek 0. On each 
occasion, the dissolved oxygen content, which acts as an indicator of bacterial activities, 
was measured in l op5mg per litre. The unit of time is taken as 10 days. The time series 
plots of the log-transformed data are displayed in Fig. 1. Petruccelli & Davies' (1986) test 
and Tsay's (1989) test were applied to the log-transformed data with p = 1 and r,, = 11. 
The results are reported in Tong & Yeung (1990) and Tong (1990, p. 279), with the 
tentative conclusion based on 5% significance level that the dissolved oxygen series of 
Butterfly, Anglers and Repulse Bay are linear, whereas the Shek 0 series is nonlinear. 
Tong (1990) noted that the Repulse Bay series is marginally nonlinear as one of his tests 
yields a p-value of 0.1 15. 

We tested the four log-transformed series for nonlinearity using the Lagrange multiplier 
test statistic after removal of the same outliers as were deleted by Tong & Yeung (1990). 
The p-values are shown in Table 5. For each model, we also report the Akaike information 
criterion, defined by AIC = -2(1,(8) - r), where r is the number of parameters in the 
model, and 0 is the restricted maximum likelihood estimate under the null hypothesis. 

Based on AIC, order p = 1 is selected for all series, so the tentative conclusions drawn 
below are mainly based on the tests with order equal to one. Furthermore, for the case 
of unit autoregressive order, the tests were replicated with m =20 and m =40, and yielded 
similar results. The p-values for Butterfly, Repulse Bay and Shek 0 data shown in Table 5 
essentially suggest linearity, whereas those of Anglers beach suggest nonlinearity. The 



(a) Anglers beach (b) Butterfly beach 

Time (10 days) Time (10 days) 

(c) Repulse Bay (d) Shek 0 beach 

0 50 100 150 200 0 50 100 150 200 

Time (1 0 days) Time (10 days) 

Fig. 1. Time series plots of the log transformed dissolved oxygen, 
DO, content in four beaches in Hong Kong; outliers marked as 

solid circles were deleted from the analysis. 

Table 5. Results of the Lagrange multiplier test applied to log 
transformed dissolved oxygen content of Hong Kong beaches after 

outlier deletion 

Sample Sample 
P m size p-value AIC size p-value AIC 

Anglers beach Butterfly beach 
1 20 193 0.0081 -240.96 192 0.1775 -266.41 
1 40 193 0.0041 -242.40 192 0.1510 -268.05 
2 20 193 0.1568 -210.56 192 0,2476 -260.80 
3 20 193 0.0314 -175.20 192 0.3052 -245.97 
4 20 193 0,0026 -88.06 192 0.3640 -220.30 

Repulse Bay Shek 0 beach 
1 20 188 0,6992 -313.90 192 0.4311 -337.23 
1 40 188 0.6868 -316.50 192 0.3638 -339.21 
2 20 188 0,9760 -304.52 192 0.5224 -302.41 
3 20 188 0.4782 -285.73 192 0.5825 -277.77 
4 20 188 0.0510 -250.25 192 0.0000 -205986 
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discrepancy between Tong & Yeung's (1990) results and ours is intriguing. As shown in 
8 6, the Lagrange multiplier test is quite powerful in detecting smooth nonlinearity but 
less powerful in detecting threshold nonlinearity. We conjecture that the discrepancy may 
have arisen because the dissolved oxygen process at Anglers beach and Shek 0 beach 
may be of different nonlinear types. The modelling of these two nonlinear processes is 
clearly an interesting future research problem. 

8. SOMEEXTENSIONS 

The Lagrange multiplier approach we have developed for (2) can be extended to models 
of the general form 

~x,(P- 1)= {ao+ a'X, +g(Xt; 0,A)) dt + o d w ,  (27) 

where 8 = (a,, . . . ,a,), A =  (A,, . . . ,A,), for some positive integer 1, and g(Xt; 8, A = 0) =0. 
Then testing for linearity is equivalent to testing H,: Aj =0, for all j, versus HI : Aj +0, for 
some j. The stochastic differential equation (27) is approximated by the difference equation 

where we write g(Xt) =g(Xt; 8,A) for brevity, 

With notation defined in $5 3.3-3.5, equation (28) allows us to write 1,(0, A, 02), the log- 
likelihood function of X conditional on X,, as 

where C = -(q/2) log(2nlm) - (q/2) log 02. It is straightforward to replicate the method- 
ology of §§ 3.1-3.5 and to implement the test. As an example, consider the following model 
that is analogous to the alternative model used in Tsay's (1986) discrete-time work: 

P P 

a, + a'Xt + exp 1 1 / Z r , s ~ , ( r - l ) ~ , ( " -
r = l  s = r  

The elements of the score vector are given as follows. For 1 < r < s <p, 



We leave for future research the problem of the order determination for nonlinear 
continuous-time autoregressive models. 
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APPENDIX 
Proof of Theorern 3 

From equations (21), (22) and (19) and some algebra, we have the following relationship between 
the first derivatives of the loglikelihood functions of {KT) and {q): 

51y* b 51y-1 1 +-- I  Ht6, ( r = l ,  . . . > P I ,  
5M,! ~ X , ~ $ ZOM, i 82 a ?NO io,$;

0 ,  0 

where H and 6, are defined as before. Let 

denote the vector of first derivatives evaluated at the restrict!d maximum iikelihood estimates 
under Ho: 3. =0. Then, from the above equations, we have D*(Og, 8;') = QD(Qo, 8;), where 

in which 0 = The expected information for {xT]j=O,l,,,,,N,[O]~,,,,,,. evaluated at the restricted 
maximum likelihood estimate, is 

Thus 

1;~.~(8g,8,*') = a2~l,(80, - & ~ ) B ' ) - ' { ~ B I , , ( ~ ~ ,8;) aIl2(do7 ~ ; ) B ' { B I ~ ~ ( ~ ~ ,  6;)) 

= a2~11.2(80,8;). 

These results follow from the expression of the Langrange multiplier statistic given in (23). 
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